Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let vectors V1¯=(cosθ)i^(3sinθ)j^2k^,  V2¯=(2cosθ)i^(sinθ)j^+k^ and V3¯=(cosθ)i^(2sinθ)j^+3k^.  Represent sides of a triangle, where θ[0,π2). If area of the triangle is minimum and Length of the median which bisects the side represented by V3¯ is l, then find the value of  1024500 (2l2)  . 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 10.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

V¯1×V¯2=|i^j^k^cosθ3sinθ22cosθsinθ1|=5sinθi^5cosθj^+5sinθcosθk^ 
    Area of the  Δ=12|V¯1×V¯2|
12.51+sin2θcos2θ=521+14sin22θ
           For area of Δ to be minimum  sin2θ=0θ=0
          Now,  V¯1=i^2k^,V¯2=2i^+k^,V¯3=i^+3k^
|V¯1|=5,|V¯2|=5,|V¯3|=10I=1022I2=5

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let vectors V1¯=(cosθ)i^−(3sinθ)j^−2k^,  V2¯=(2cosθ)i^−(sinθ)j^+k^ and V3¯=(cosθ)i^−(2sinθ)j^+3k^.  Represent sides of a triangle, where θ∈[0,π2). If area of the triangle is minimum and Length of the median which bisects the side represented by V3¯ is l, then find the value of  1024500 (2l2)  .