Q.

Let x = 4 be a directrix to an ellipse whose centre is at the origin and its eccentricity is 12. If 

P(1,β),β>0 is a point on this ellipse, then the equation of the normal to it at P is: 4x-2y=k then k is 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

1

b

2

c

3

d

4

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The ecentricity is  e=12 Given that the directrix is x=4Hence ae=4it gives a=2, by substituting the eccentricity valueb2=a21e2=4114=3Equation of the ellipse is x24+y23=1

Since P1,β is a point on the ellipseSubstitute the point in the equation of the ellipseHence, P1,32 is given pointThe equation of the normal is a2xx1+b2yy1=a2e2Substitute the appropriate values, we get 4x2y=1

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon