Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let ƒ(x) be a real differentiable function such that f(0)=1 and f(x+y)=f(x)f(y)+f(x)f(y) for all x,yR. Then n=1100logcf(n) is equal to :

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

5220

b

2384

c

2406

d

2525

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

f(x+y)=f(x)f(y)+f(x)f(y)

Put x=y=0

f(0)=f(0)f(0)+f(0)f(0)

f(0)=12

Put y=0

f(x)=f(x)f(0)+f(x)f(0)

f(x)=12f(x)+f(x)

f(x)=f(x)2

dydx=y2dyy=dx2

 lny =x2+c

f(0)=1C=0

lny=π2f(x)=ex/2

ln f(n)=n2

n=1100ln f(n)=12n=1100n=50502

=2525

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let ƒ(x) be a real differentiable function such that f(0)=1 and f(x+y)=f(x)f′(y)+f′(x)f(y) for all x,y∈R. Then ∑n=1100 logc⁡f(n) is equal to :