Q.

Let {x} denote the fractional part of x and f(x)=cos1(1{x}2)sin1(1{x}){x}{x}3, x0. If L and R respectively denotes the left hand limit and the right hand limit of f(x) at x = 0, then 16π2(L2+R2) is equal to_______.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Finding right hand limit
limx0+f(x)=limh0f(0+h)=limh0f(h) 
=limh0cos1(1h2)sin1(1h)h(1h2)=limh0cos1(1h2)h(sin111) 
Let cos1(1h2)=θcosθ=1h2  
=π2limθ0θ1cosθ=π2limθ011cosθθ2=π211/2 
R=π2 
Now finding left hand limit
L=limx0f(x)=limh0f(h) 
=limh0cos1(1{h}2)sin1(1{h}){h}{h}3=limh0cos1(1(h+1)2)sin1(1(h+1))(h+1)(h+1)3 
=limh0cos1(h2+2h)sin1h(1h)(1(1h)2)=limh0(π2)sin1h(1(1h)2) 
=π2limh0(sin1hh2+2h)=π2limh0(sin1hh)(1h+2) 
L=π4 
16π2(L2+R2)=16π2(π22+π216)=9 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon