Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let x, y, z be positive real numbers such that x + y + z = 1. The minimum value of 1x+4y+9z is R, then R is divisible by 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2

b

3

c

9

d

12

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Clearly, z is a real number in the interval [0, 1]. Hence there is an angle a such that z=sin2a. Then x + y = 1 , x+y=1sin2a=cos2a, or xcos2a+ycos2a=1. For an angle b, we have cos2b+sin2b=1. Hence, we can set x=cos2acos2b,y=cos2asin2b for some angle b. It suffices to find the minimum value of P=sec2asec2b+4sec2acsc2b+9csc2a P=(tan2α+1)(tan2b+1)+4(tan2a+1)(cot2b+1)+9(cot2a+1)

Expanding the right-hand side gives

P=14+5tan2a+9cot2a+(tan2b+4cot2b)(1+tan2a) 14+5tan2a+9cot2a+2tanb.2cotb(1+tan2a) =18+9(tan2a+cot2a)18+9.2tanacota=36

Equality holds when tana=cota and b=2cotb, which implies that cos2a=sin2a and 2cos2b=sin2b. Because sin2θ+cos2θ=1, equality holds when cos2a=12 and cos2b=13; that is, x=16,y=13,z=12. 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let x, y, z be positive real numbers such that x + y + z = 1. The minimum value of 1x+4y+9z is R, then R is divisible by