Q.

Let (x1,y1,z1)and(x2,y2,z2)  where (x1>x2)  be two triplets satisfying the following simultaneous equations:
 log10(2xy)=(log10x)(log10y)
 log10(yz)=(log10y)(log10z)
 log10(2zx)=(log10z).(log10x)
Then the value of (x1+y1+z1)x2y2z2 is:
 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

100

b

10

c

20

d

15

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let  log10x=a,log10y=b,log10z=c
Hence, given equation are a+b+log102=ab ----------------(1)
      b+c=bc  ----------------(2)
           c+a+log102=ca  ----------------(3)
Now, (1) – (3)
 bc=a(bc)   b=c or  a=1.
Putting b=c in equation (2), we get                                                                       

 or  b=2
Putting this in equation(1),  b=0a+log102=0log102x=0x=1/2             2b=b2b=0
             b=2a+2+og102=2a  a=log10200x=200
Now, a=1 is rejected, as by putting this in first equation. 
1+b+log102=b1+log102=0 which is not possible.
       (x1,y1,z1)=(200,100,100)            (x2,y2,z2)=(12,1,1)  
         (x1+y1+z1)x2y2z2=(400)1/2=20  .
 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon