Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let (x1,y1,z1)and(x2,y2,z2)  where (x1>x2)  be two triplets satisfying the following simultaneous equations:
 log10(2xy)=(log10x)(log10y)
 log10(yz)=(log10y)(log10z)
 log10(2zx)=(log10z).(log10x)
Then the value of (x1+y1+z1)x2y2z2 is:
 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

10

b

20

c

15

d

100

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let  log10x=a,log10y=b,log10z=c
Hence, given equation are a+b+log102=ab ----------------(1)
      b+c=bc  ----------------(2)
           c+a+log102=ca  ----------------(3)
Now, (1) – (3)
 bc=a(bc)   b=c or  a=1.
Putting b=c in equation (2), we get                                                                       

 or  b=2
Putting this in equation(1),  b=0a+log102=0log102x=0x=1/2             2b=b2b=0
             b=2a+2+og102=2a  a=log10200x=200
Now, a=1 is rejected, as by putting this in first equation. 
1+b+log102=b1+log102=0 which is not possible.
       (x1,y1,z1)=(200,100,100)            (x2,y2,z2)=(12,1,1)  
         (x1+y1+z1)x2y2z2=(400)1/2=20  .
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let (x1,y1,z1) and (x2,y2,z2)  where (x1>x2)  be two triplets satisfying the following simultaneous equations: log10(2xy)=(log10x)(log10y) log10(yz)=(log10y)(log10z) log10(2zx)=(log10z).(log10x)Then the value of (x1+y1+z1)x2y2z2 is: