Q.

Let y = y(x) be the solution curve of the differential equation sin2x2logetanx2dy+4xy42xsinx2π4dx=00<x<π2, which passes through the point π6,1. Then yπ3 is equal to _______

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

sin2x2lntanx2dy+4xy42xsinx2π4dx=0lntanx2dy+4xydxsin2x242xsinx2π4sin2x2dx=0dylntanx242xsinx2cosx222sinx2cosx2dx=0dylntanx24xsinx2cosx2sinx2+cosx221dx=0

dylntanx2+2dtt21=0ylntanx2+212lnt1t+1=cylntanx2+lnsinx2+cosx21sinx2+cosx2+1=c Put y=1 and x=π61ln13+ln12+32112+32+1=c Now x=π3y(ln3)+ln12+32112+32+1=ln13+ln313+3y(ln3)=ln13y=1|y|=1

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let y = y(x) be the solution curve of the differential equation sin⁡2x2loge⁡tan⁡x2dy+4xy−42xsin⁡x2−π4dx=0, 0<x<π2, which passes through the point π6,1. Then yπ3 is equal to _______