Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y=f(x) be a curve C1 passing through (2,2) and (8,12) and satisfying a differential equation y(d2ydx2)=2(dydx)2. Curve C2 is the director circle of the circle x2+y2=2. If the shortest distance between the curves C1 and C2 is (pq) where p,qN, then find the value of (p2q).

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 62.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given y(d2ydx2)=2(dydx)2y''y'=2y'ylny'=2lny+lna

 y2y2=adyy2=adx1y=ax+b

Since curve is passing through (2,2) and (8,12)

So, 2a+b=12

8a+b=2

Question Image

 

 

 

 

 

 

 

 On solving (i) and (ii), we get a=14,b=0

Hence, C1:xy=4 and curve C2 is x2+y2=4.

Shortest distance between C1 and C2=222=82 

Hence, (p2q)=642=62

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring