Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  y=f(x) is the solution of the differential equation  yd2ydx22(dydx)2=0,f(1)=1. If  S is the area bounded by curve  y=f(x),y=f1(x) and  xy=0, in the first quadrant, and if  f1(2)=0, then which of the following statement(s) can be TRUE?  (loge20.69)

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

[S]=2   ([.] G.I.F)

b

Angle of intersection of  y=f(x) and  y=f1(x) is  π2

c

Angle of intersection of  y=f(x) and  y=f1(x) is  tan1(34)  

d

[S]=1   ([.] G.I.F)

answer is A, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

yd2ydx2=2(dydx)2 (d2ydx2)(dydx)=2(dydx)y

On integrate we get  dydx=ky2

dyy2=kdx     y=1kx+c

Question Image

 

 

 

 

 

 

 

 

 

Given,  

f(1)=1    c=1k     .......(i)

Given  f1(2)=0f(0)=2

   2=1c    ......(ii)

From (i) & (ii) 

c=k=12    f(x)=y+2x+1 f1(x)=2x1 S=012x+1dx+12(2x1)dx =4ln21

Angle of intersection at   (1,1)

f'(x)=2(x+1)2,(f'(x))=2x2 m1=(dydx)(1,1)=12m2=(dydx)(1,1)=2    angle θ=tan1(m1m21+m1m2)=tan134

Similarly we get  θ=tan1(34)at(2,2)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring