Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  y = y(x)  be the solution curve of the differential equation    dydx+1x21y=(x1x+1)1/2,x>1 passing through the point (2,13).  Then,  7y(8) is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

122loge3

b

11+6loge3

c

196loge3

d

19

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

 Given , diferential equation 
dydx+1x21y=(x1x+1)12,x>1
Which is of first order linear differential equations .
Here,p= p=1x21,Q=X1X+1
    IF =  epdx=e1x21dx=e12log|x1x+1|=x1x+1
Now ,solution is given by 
             y.IF= Q.IF  dx
    yx1x+1=x1x+1x1x+1dx      yx1x+1=x1x+1dx       yx1x+1=(12x+1)dx       yx1x+1=x2log(x+1)+c
∴   The curve passes through  (2,13)
   1313=22log3+C    132+2log3=C   C=2   log  353         yx1x+1=x2log(x+1)+2log353      y=x+1x1[x2log  (x+1)+2log353]       y(8)=37[82log9+2log353] 7y(8)=3[1932log32+2log  3] =3[1912log3+6log33]=196log3







 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring