Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y=y(x) be the solution of the differential equation (3y25x2)ydx+2x(x2y2)dy=0 such that  y(1)=1. then |(y(2))312y(2)| is equal to : 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

322

b

64

c

162

d

32

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

(3y25x2)y.dx+2x(x2y2)dy=0 dydx=y(5x23y2)2x(x2y2) Put,  y=mx m+x.dmdx=m(53m2)2(1m2) x.dmdx=(53m2)m2m(1m2)2(1m2) dxx=2(m21)m(m23)dm dxx=(2m43m+4m3m23)dm dxx=(23)m+(2mm23)dm ln|x|=23ln|m|+23ln|m23|+C or  ln|x|=23ln|yx|+23ln|(yx)23|+C put,  (x=1,y=1);  we get,  c=23ln(2) ln|x|=23ln|yx|+23ln|(yx)23|23ln(2) (yx)[(yx)23]=2.(x32)

Put x=2 to get y (2)

y(y212)=4×2×2×22 y312y=322 |y3(2)12y(2)|=322

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring