Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y=y(x) be the solution of the differential equation  dydx=4y3+2yx23xy2+x3,y(1)=1. If for some nN,y(2)[n1,n), then 2n is equal to ____________ 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given differential equations is

dydx=yx(4y2+2x2)(3y2+x2)

Put y=vxdydx=v+xdvdx

v+xdvdx=v(4v2+2)(3v2+1)

v+xdvdx=v(4v2+2)(3v2+1)

xdvdx=v((4v2+23v21)3v2+1)

xdvdx=v3+v3v2+13v2+1v3+vdv=dxx

Take integral both sides,

(3v2+1)dvv3+v=dxx

ln|v3+v|=lnx+c

ln|(yx)3+(yx)|=lnx+C

Here,y(1)=1 and  C=ln2

Here y(2)[n1,n)

ln(y38+y2)=2ln2y38+y2=4

[y(2)]=2

Therefore,
 n=3 2n=6

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let y=y(x) be the solution of the differential equation  dydx=4y3+2yx23xy2+x3,y(1)=1. If for some n∈N,y(2)∈[n−1,n), then 2n is equal to ____________