Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y=y (x) be the solution of the differential equation dydx+2y2cos4xcos2x=xetan1(2cot2x),0<x<π2  with  y(π4)=π232, If  y(π3)=π218etan1(α),then the value of  3α2 is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

2

c

3

d

4

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

dydx+22cos4xcos2xy=xetan1(2cot2x)

Here given differential equation is in the form of dydx+py=Q

dx2cos4xcos2x{P=dx2cos4xcos2x=dxcos4x+sin4x=cosec4xdx1+cot4x

=t2+1t4+1dt=(1+1t2)(t1t)2+2dt=12tan1(t1t2)cot  x=  t=  12tan1(2cot2x)    IF=etan1(2cot2x)yetan1(2cot2x)=xdx;    yetan1(2cot2x)=x22+cy(π4)=π232+cc=0;y=x22etan1(2cot2x)y(π3)=π218etan1   (2cot  2π3)=π218etan1   (23)α=233α2=2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring