Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y = y(x) be the solution of the differential equation cosx(loge(cosx))2dy + (sinx –3ysinx loge(cosx))dx = 0, x0,π2. If yπ4=1loge2, then yπ6 is:

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2loge(3)loge(4)

b

2loge(4)

c

2loge(3)loge(4)

d

2loge(4)loge(3)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

cosx(ln(cosx))2dy+(sinx3y(sinx)ln(cosx))dx=0cosx(ln(cosx))2dydx3sinxln(cosx)y=sinxdydx3tanxln(cosx)y=tanx(ln(cosx))2dydx+3tanxln(secx)y=tanx(ln(secx))2I.F =e3tanxln(secx)dx=(ln(secx))3 y×(ln(secx))3=tanx(ln(secx))2(ln(secx))3dx+Cy×(ln(secx))3=12(ln(secx))2+CGiven :x=π4,y=1ln21ln2×(ln2)3=12×(ln2)2+C
18ln2×(ln2)3=12×14(ln2)2+C18(ln2)2=18(ln2)2+CC=0y(ln(secx))3=12(ln(secx))2+0y=12ln(secx)y=12ln(cosx)yπ6=12lncosπ6
=12ln32=1212ln3ln2=1ln3ln4

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring