Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y=y(x), y>0, be a solution curve of the differential equation (1+x2)dy=y(xy)dx. If y(0)=1 and y(22)=β, then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

e3β1=e(5+2)

b

e3β1=e(3+22)

c

eβ1=e2(5+2)

d

eβ1=e2(3+22)

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

dydx=y(xy)1+x2dydx=xy1+x2y21+x2
Divided by y2
1y2dydxx1+x2(1y)=11+x2
Put 1y=t then, 1y2dydx=dtdx
dtdx+(x1+x2)t=11+x2   (linear form)
I.F e122x1+x2dx=1+x2
Given solution is t1+x2=11+x21+x2dx
1+x2y=11+x2dx
1+x2y=ln|x+1+x2|+c
y(0)=11=ln1+cc=1 1+x2y=ln|x+1+x2|+1 β=y(22) 3β=ln|22+3|+lne=lne(3+22) e3β1=e(3+22)

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring