Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y(x) be a solution of the differential equation 1+exy+yex=1

If y(0)=2 then which of the following statement(s) is (are) true?

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

y(-1)=0

b

y(2)=0

c

y(x)has no critical point in the interval (-1, 0) ,y(4)=0 

d

y(x) has critical point in the interval (-1, 0) 

answer is A, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

we have ,

1+exy+yex=1

 y+ex1+exy=11+ex             …(i)

This is a linear differential equation with integrating factor 

 I.F =eex1+exdx=elog1+ex=1+ex

Multiplying both sides of (i) by I.F. == 1 +ex, we obtain

y1+ex+yex=1

Integrating both sides with respect to x, we obtain

y1+ex=x+C                       …(ii)

It is given that y(0) =2 i.e. y =2 when x =0. Putting x =0, y =2 in (ii), we get 

4=0+CC=4

Putting C =4 in (ii), we obtain  

y1+ex=x+4y=x+41+exy(4)=0

Putting y=x+41+exin (i), we obtain 

y=1+ex(x+4)ex1+ex2

y(1)=1+e13e11+e12=e2e1+e12>0  and  y(0)=12<0

 y' (x) =0 for some x  (-1, 0) 

 y(x) has a critical point in the interval (-1, 0). 

Hence, options (a) and (c) are true. 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring