Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y=yx be the solution of the differential equation  cosx3sinx+cosx+3dy=1+ysinx3sinx+cosx+3dx,0xπ2,y0=0. Then, yπ3 is equal to:

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2loge3384

b

2loge23+1011

c

2loge23+96

d

2loge3+72

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given differential equation is cosx3sinx+cosx+3dy=1+ysinx3sinx+cosx+3dxRewrite the above equation as dydx=1+ysinx3sinx+cosx+3cosx3sinx+cosx+3=1cosx3sinx+cosx+3+ytanxdydxytanx=1cosx3sinx+cosx+3

This is a linear differential equation  Integrating factor is etanxdx=elogsecx=cosx Hence, the solution of the given differenital equation is as below

ycosx=1cosx3sinx+cosx+3cosxdx=13sinx+cosx+3dx

Substitute tanx2=t,dx=2dt1+t2,sinx=2t1+t2,cosx=1-t21+t2

ycosx=132t1+t2+1t21+t2+32dt1+t2=26t+1t2+3+3t2dt=22t2+6t+4dt=1t2+3t+2dt=1t+1t+2dt=1t+11t+2dt=lnt+1lnt+2=lntanx2+1tanx2+2+c

substitute x=0,y=0 it gives c=ln2

Therefore, the solution for the given differential equation is ycosx=ln1+tanx22+tanx2

when x=π3

y12=loge1+tanπ62+tanπ6+ln2

simplifying the above expression  we get y=2loge10+2311

 

 

 

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let y=yx be the solution of the differential equation  cosx3sinx+cosx+3dy=1+ysinx3sinx+cosx+3dx,0≤x≤π2,y0=0. Then, yπ3 is equal to: