Q.

Let z1,z2,z3 be complex numbers of equal magnitude satisfying z1+z2+z3=32i5 and z1z2z3=3+i5.  If z1=x1+iy1,z2=x2+iy2,z3=x3+iy3;x1,x2,x3,y1,y2,y3R then 16(x1y1+x2y2+x3y3)25=

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

|z1z2z3|=22so|z1|=|z2|=|z3|=2 Now, z¯1+z¯2+z¯3=32+i5    2(z1z2+z2z3+z3z1)z1z2z3=32+i5   z1z2+z2z3+z3z1=(34+i52)(3+i5) Now, x1y1+x2y2+x3y3=Im(z12+z22+z32)2 =Im(z1+z2+z3)22Im(z1z2+z2z3+z3z1) =152(154+152)=154

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let z1,z2,z3 be complex numbers of equal magnitude satisfying z1+z2+z3=−32−i5 and z1z2z3=3+i5.  If z1=x1+iy1,z2=x2+iy2,z3=x3+iy3;x1,x2,x3,y1,y2,y3∈R then 16(x1y1+x2y2+x3y3)25=