Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let 2x2+3x+410=r=020arxr.Then ,  a7a13is equal 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

8

b

16

c

12

d

9

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The general term in the expansion of 2x2+3x+410, is .

10!r!s!t!2x2r(3x)s4t=10!r!s!t!2r3s4tx2r+s 

where r+s+t=10 

Clearly , a7= Coefficient of x7and a13= Coefficient of x13

For the coefficient of x7 , we must have 

2r+s=7 and r+s+t=10 

 r=0,s=7,t=3;r=1,s=5,t=4;r=2,s=3,t=5 and r=3,s=1,t=6 

 a7=10!1!7!3!203743+10!1!5!4!23544 +10!2!3!5!223345+10!3!1!6!233146

 a7=10!37437!3!+10!235445!4!+10!2233452!3!5!+10!233463!6!

For the coefficient of  x13, we must have  

2r+s=13 and r+s+t=10 

    r=3,s=7,t=0;r=4,s=5,t=1;r=5,s=3,t=2;    r=6,s=1,t=3     a13=10!2337403!7!0!+10!2435414!5!1!+10!2533425!3!2!        a13=10!2631436!1!3!+10!263436!3!    

 a13=10!23373!7!+10!35264!5!+10!33295!3!2!+10!32126!3!

Clearly , a7=23a13 

a7a13=8

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon