Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α=3i^+j^ and  β=2i^j^+3k^,  If β=β1β2,  where β1 is parallel to α and β2 is perpendicular to α , then β1×β2, is equal to 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12(3i^9j^+5k^) 

b

12(3i^+9j^+5k^)

c

3i^+9j^+5k^

d

3i^9j^5k^

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

β1=k1α,β2=β1-β=k1α-2i^j^+3k^ β2=k13i^+j^-2i^+j^-3k^=3k1-2i^+k1+1j-3k^ α¯.β2¯=03k12.3+k1+1.1=09k16+k1+1=0k1=12

β1¯=123i¯+j¯,β2¯=-12i^+32j^-3k^ β1¯×β2¯=i^j^k^3/21/20-1/23/2-3   β1×β2=12(3i^+9j^+5k^)

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring