Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let a1,a2,a3,,a10 be in G.P. with ai>0 for 

i=1,2,3,,10 and S be the set of pairs (r,k),r,kN) for which

D=logea1ra2k    logea2ra3k    logda3ra4klogea4ra5k    logea5ra6k    logea6ra7klogea7ra8k    logea8ra9k    logea9ra10k=0

Then the number of elements in S, is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

2

b

10

c

Infinity many

d

4

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Let R be the common ratio of the G.P. a1,a2,,a10

D=logea1ra2k    logea2ra3k    logda3ra4klogea4ra5k    logea5ra6k    logea6ra7klogea7ra8k    logea8ra9k    logea9ra10k=0

Applying C2C2C1 and C3C3C2, we obtain

D=logea1ra2k    logRr+k    logRr+klogea4ra5k    logRr+k    logRr+klogea7ra8k    logRr+k    logRr+k

 D=0 for all values of r and k.

Hence, the set S has infinitely many pairs (r, k), r, k N.

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a1,a2,a3,…,a10 be in G.P. with ai>0 for i=1,2,3,…,10 and S be the set of pairs (r,k),r,k∈N) for whichD=loge⁡a1ra2k    loge⁡a2ra3k    logd⁡a3ra4kloge⁡a4ra5k    loge⁡a5ra6k    loge⁡a6ra7kloge⁡a7ra8k    loge⁡a8ra9k    loge⁡a9ra10k=0Then the number of elements in S, is