Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let a1=b1=1 and an=an1+(n1),bn=bn1+an1,n2. If S=n=110bn2n and T=n=18n2n1then 27(2ST) is equal to ________.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 461.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

S=n=110bn2n=b12+b222+.+b10210S2=b122+.+b7210+b10211 on subtracting S2=b12+b2b122+b3b223+.+b10b9210b10211S2=12+a122+a223++a9210b10211S4=14+a123+a224++a8210+a9211b10212 on subtracting S4=14+a2a123+a3a224+..+a9a8210b10211a9211+b10212S=1+a2a12+a3a222+.+a9a828a929b10210S=1+12+222+323+.+828a929b10210
T=1+22+322+.+8272S=2+1+221+322+.+827a928b10292ST=2a928b102927(2ST)=28a92b104..(1)anan1=n1ak=ak2+bk+ca+b+c=14a+2b+c=29a+3b+c=4a=12,b=12,c=1a9=37
bk=ak3+bk2+ck+da+b+c+d=18a+4b+2c+d=227a+9b+3c+d=464a+16b+4c+d=8bk=k36k22+43kb10=130
Using a9& b10 in equation ….(1)
We get S=461

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a1=b1=1 and an=an−1+(n−1),bn=bn−1+an−1,∀n≥2. If S=∑n=110 bn2n and T=∑n=18 n2n−1then 27(2S−T) is equal to ________.