Q.

Let
A1=(x,y):|x|y2, |x|+2y8 and A2={(x,y):|x|+|y|k}. If 27 (Area A1=5

(Area A2 ), then k is equal to :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

A1=(x,y):|x|y2,|x|+2y8andA2={(x,y):|x|+|y|k}.

Question Image

area A1=202y2dy+24(8-2y)dy

=2y3302+8y-y224

Question Image

 area A1=2×203=403AreaA2=4×12k2Area A2=2k2Now27 AreaA1=5 AreaA29×4=k2k=6

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
LetA1=(x,y):|x|≤y2, |x|+2y≤8 and A2={(x,y):|x|+|y|≤k}. If 27 (Area A1=5(Area A2 ), then k is equal to :