Q.

Let A(2 sec θ, 3 tan θ) and B(2 sec ψ, 3 tan ψ) where θ+ψ=π2, be two points on the hyperbola x24-y29=1. If (α, β) is point of intersection of normals to the hyperbola at A and B then β=

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

-313

b

-133

c

313

d

133

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given hyperbola x24-y29=1 where a2=4, b2=9 Given A=(2secθ, 3tanθ), B=(2secψ, 3tanψ), θ+ψ=π2 Equation of tangent at A is 2xsecθ+3ytanθ=13 2xcosθ+3ycotθ=13       Equation of tangent at B is 2xsecψ+3ytanψ=13 2x cosψ+3y cotψ=13 2x sinθ+3y tanθ=13            θ+ψ=π2 Now (1)sinθ-(2)cosθ 3ycosθ-3ysinθ=13sinθ-13cosθ 3y(cosθ-sinθ)=-13(cosθ-sinθ) y=-133 Given point of intersection of   &   is (α,β) β=-133 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon