Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let A(2 sec θ, 3 tan θ) and B(2 sec ψ, 3 tan ψ) where θ+ψ=π2, be two points on the hyperbola x24-y29=1. If (α, β) is point of intersection of normals to the hyperbola at A and B then β=

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

-313

b

-133

c

313

d

133

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given hyperbola x24-y29=1 where a2=4, b2=9 Given A=(2secθ, 3tanθ), B=(2secψ, 3tanψ), θ+ψ=π2 Equation of tangent at A is 2xsecθ+3ytanθ=13 2xcosθ+3ycotθ=13       Equation of tangent at B is 2xsecψ+3ytanψ=13 2x cosψ+3y cotψ=13 2x sinθ+3y tanθ=13            θ+ψ=π2 Now (1)sinθ-(2)cosθ 3ycosθ-3ysinθ=13sinθ-13cosθ 3y(cosθ-sinθ)=-13(cosθ-sinθ) y=-133 Given point of intersection of   &   is (α,β) β=-133 

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon