Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let a and b be the vectors along the diagonal of a parallelogram having area 22. Let the angle between a and b be acute. |a|=1 and |a.b|=|a×b|. If c=22(a×b)2b, then an angle between b and c is :

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

3π4

b

5π6

c

π4

d

-π4

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 12|a×b|=22  |a||b|sinθ=42 |b|sinθ=42 and  |ab|=|a×b|  |a||b|cosθ=|a||b|sinθtanθ=1 θ=π4

By (i) |b|sinπ4=42 |b|=8

  Now c=22(a×b)2b  cb=2|b|2=128  and cc=8|a×b|2+4|b|2  |c|2=8.32+4.64=512  |c|=162

From (ii) and (iii)

  |c||b|cosα=128cosα=12 α=3π4

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a→ and b→ be the vectors along the diagonal of a parallelogram having area 22. Let the angle between a→ and b→ be acute. |a→|=1 and |a→.b→|=|a→×b→|. If c→=22(a→×b→)−2b→, then an angle between b→ and c→ is :