Q.

Let a and b be the vectors along the diagonal of a parallelogram having area 22. Let the angle between a and b be acute. |a|=1 and |a.b|=|a×b|. If c=22(a×b)2b, then an angle between b and c is :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

3π4

b

5π6

c

π4

d

-π4

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 12|a×b|=22  |a||b|sinθ=42 |b|sinθ=42 and  |ab|=|a×b|  |a||b|cosθ=|a||b|sinθtanθ=1 θ=π4

By (i) |b|sinπ4=42 |b|=8

  Now c=22(a×b)2b  cb=2|b|2=128  and cc=8|a×b|2+4|b|2  |c|2=8.32+4.64=512  |c|=162

From (ii) and (iii)

  |c||b|cosα=128cosα=12 α=3π4

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a→ and b→ be the vectors along the diagonal of a parallelogram having area 22. Let the angle between a→ and b→ be acute. |a→|=1 and |a→.b→|=|a→×b→|. If c→=22(a→×b→)−2b→, then an angle between b→ and c→ is :