Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let a=αi+2jk and b=2i+αj+k, where αR. If the area of the parallelogram whose adjacent sides are represented by the vectors a and b is 15α2+4, then the value of 2|a|2+ab|b|2 is equal to :

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

7

b

10

c

14

d

9

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

a=αi^+2j^k^, b=2i^+αj^+k^

area of parallelogram=|a^×b^|

|a^×b^|=ijkα2-1-2α1 =(α+2)2+(α2)2+α2+42

Given |a^×b^|=15α2+4

2α2+4+α2+42=15α2+4α2+42=13α2+4α2+4=13α2=92|a|2+(ab)|b|2|a|2=α2+4+1=α2+5|b|2=4+α2+1=α2+5ab=2α+2α1=1 2|a|2+(ab)|b|22α2+51α2+5=α2+5=14

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon