Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let α and α2 be the roots ofx2+x+1=0 then the equation whose roots are α31 and α62, is 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

x2+x1=0

b

x2+x+1=0

c

x2x+1=0

d

x60+x30+1=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 Since, α,α2 be the roots of the equation x2+x+1=0
     α+α2=1 and     α3=1    ...(i)  Now,     α31+α62=α311+α31    α31+α62=α30α1+α30α    α31+α62=α310α1+α310α    α31+α62=α(1+α)     [from Eq. (ii)]     α31+α62=1    [ from Eq. (i)]  Again,      α31α62=α93    α31α62=α331=1
 Required equation is,
x2α31+α62x+α31α62=0x2+x+1=0

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon