Q.

Let α and β be the roots of the equation x2+(2i1)=0. Then the value of α8+β8 is equal to :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

1500

b

50

c

1250

d

250

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

α,β are roots of x2+2i-1=0x2=1-2iα2=12i and β2=12iα2=β2=12iα8=β8
Hence α8+β8=2α24=2(1+4)4=50

Explanation:

Given: α and β be the roots of x2 + (2i - 1) = 0

→ x2 + (2i - 1) = 0

→ x2 = 1 - 2i

→ α2 = 1 - 2i and β2 = 1 - 2i

→ α2 = β2

→ (α2)4 = (β2)4

→ α8 = β8

∴ α8 + β8 = 2α8

∴ α8 + β8 = 2(α2)4

→ α8 + β8 = 2(1 - 2i)4

→ |α8 + β8| = 2|1 - 2i|4

→ |α8 + β8| = 2 × ( √(12 + (-2)2) )4

→ |α8 + β8| = 2 × (√5)4

→ |α8 + β8| = 2(25) = 50

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon