Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

let an=k=1ntan2kπ2n+1& bn=k=1ntan2kπ2n+1, then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Units digit in b2022 is five

b

Units digit in b2022 is three

c

Units digit in  a2022 is zero

d

Units digit in a2022 is nine

answer is A, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

sinnθ=k=0n12(1)knC2k+1cosn2k1θsin(2k+1)θ
sin(2n+1)θ=k=0n(1)k2n+1C2k+1cos2n2kθsin2k+1θ
=tanθcos2n+1θk=0n(1)k2n+1C2k+1(tanθ)2k
k=0n(1)k2n+1C2k+1tan2kθ=0
 for θ=jπ2n+1,1jn
 so tan2jπ2n+1,1jnare the roots of k=0n(1)k2n+1C2k+1xk=0
an&bnare the sum and the product of the roots respectively, we have
an=2n+1C2=n(2n+1)bn=2n+1C2n=2n+1

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring