Q.

Let α,β be the roots of the equation x24λx+5=0 and α,γ be the roots of the equation x2(32+23)x+7+3λ3=0. If β+γ=32, then (α+2β+γ)2 is equal to :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 98.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

 α,β are roots of x24λx+5=0
 α+β=4λ and αβ=5
Also, α,γ are roots of

 x2(32+23)x+7+33λ=0,λ>0   α+γ=32+23, αγ=7+33λ

 α is common root

 α24λα+5=0  and α2(32+23)α+7+33λ=0

From (i) - (ii): we get α=2+33λ32+234λ

β+γ=32

 4λ-α+32+23α=32  4λ+32+232α=32

32=4λ+32+234+63λ32+234λ 32(32+234λ)=32+2324λ2-4+63λ 18+66-122λ=18+12+66-16λ2-4-63λ 16λ2+63λ-122λ-8-66=0

   8λ2+3(322)λ436=0   λ=6233±9(1146)+32(4+36)16

 λ=2 (α+2β+γ)2 =(α+β+β+γ)2  =(42+32)2  =(72)2  =98

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon