Q.

Let bi>1 for i=1,2,,101 Suppose logeb1,logeb2,,logeb101 are in Arithmetic Progression (A.P) with the common difference loge2. Suppose a1,a2,,a101 are in A.P. such that a1=b1 and a51=b51.If t=b1+b2++b51 and s=a1+a2++a51, then 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

s>t and a101>b101

b

s<t and a101<b101

c

s<t and a101>b101

d

s>t and a101<b101

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

It is given that logeb1,logeb2,,logeb101 are in A.P. with common difference loge2. Therefore, b1,b2,b3,,b101 are in G.P. with common ratio 2.

Let d be the common difference of the A.P. a1,a2,a2,a101.

Now, a51=b51

 a1+50d=a1250             b1=a1

50d=2501a1                             ..(i)

   a101=a1+100d=a1+22501a1=2511a1

and, b101=b1×2100=a12100

Clearly, b101>a101

Now,

       s=5122a1+50d=51a1+50×51d2 s=51a1+5122501a1                               [Using (i)]

and, t=b1+b2++b51

 t=b1251121=a12511 st=51a2250+1a12511=47×249+532a1>0 s>t

Hence, s>t and a101<b101.

So, option (b) is correct.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon