Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9
Banner 10

Q.

Let E1 and E2 be two ellipses whose centeres are at the origin. The major axes of E1 and E2 lie along the x-axis and the y-axis respectively. Let S be the  circle x2+(y1)2=2 The straight line x+y=3 touches the curves S, E1 and E2 at P, Q and R, respectively. Suppose that  

PQ = PR = 223  If e1 and e2 are the eccentricities of E1 and E2 respectively, then the correct expression( s) is are

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

e12+e22=4340

b

e1e2=7210

c

e12e22=58

d

e1e2=34

answer is A, B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

The equation to the ellipses are 

E1:x2a2+y2b2=1(a>b) and E2:x2c2+y2d2=1(c<d)

The tangent is x+y=3

The tangent at  (α,β) to x2+(y1)2=2

xα+(y1)(β1)=2

 i.e. xα+(β1)y=β+1

Given ,α=1,β=2

Hence P is (1, 2). 

x+y=3 touches x2a2+y2b2=1 at x1,y1

xx1a+yy1b=1

Comparing , we get  Qa3,b3

Again it touches  x2c2+y2d2=1 we get Rc3,d3

a312+b322=89

Also, a+b=9, we get  (a,b)=(5,4)

similarly, (c,d)=(1,8) 

e12=145=15;e22=118=78

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon