Q.

Let E1 and E2 be two ellipses whose centers are at the origin. The major axes of   E1 and E2  lie along the x-axis and the y-axis, respectively. Let S be the circle x2+y12=2. The straight line x+y=3 touches the curves S,  E1 and E2 at P, Q and R, respectively. Suppose that PQ=PR=223. If  e1and  e2are the eccentricities of   E1 and E2   respectively, then the correct expression(s) is (are)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

e12+e22=4340

b

e1e2=34

c

e1e2=7210

d

e12e22=58

answer is A, B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Question Image

The line x+y=3 touches the circle x2+y12=2 at P

P is foot of perpendicular from 0,1 to x+y=3

 P1,2

Since PQ=223=PR  we have Q1+2232,22232

E1:x2a2+y2b2=1 with e12=a2b2a2

 

  a2+b2=9  x+y=3  touches  E1a2m2+b2=c2

Since Q lies on E1, we have 259a2+169b2=1

 a2=5,b2=4

e12=15

 

similarly 

R123,  2+23 lies on x2c2+y2d2=1   c<d

c2+d2=919c2+649d2=1   solvingc2=1,d2=8

hence, e22=78

Verifying the given options, we can see that options (A),(B) are correct.

 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let E1 and E2 be two ellipses whose centers are at the origin. The major axes of   E1 and E2  lie along the x-axis and the y-axis, respectively. Let S be the circle x2+y−12=2. The straight line x+y=3 touches the curves S,  E1 and E2 at P, Q and R, respectively. Suppose that PQ=PR=223. If  e1and  e2are the eccentricities of   E1 and E2   respectively, then the correct expression(s) is (are)