Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

 Let f:(0,π) be a twice differentiable function such that limtf(x)sint-f(t)sinxt-x=sin2x for all x(0,π) . If fπ6=-π12, then which of the following statement (s) is (are) TRUE? 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

fπ4=π42

b

f"π2+fπ2=0

c

There exists α0,π such that  f'α=0

d

fx<x46x2 for all x0,

answer is B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

limtxf(x)sint-f(t)sinxt-x=sin2x   By using L'Hopital limtxf(x)cost-f1(t)sinx1=sin2xf(x)cosx-f(x)sinx=sin2x  -f1(x)sinx-f(x)cosxsin2x=1-df(x)sinx=1    f(x)sinx=x+c

 Put x=π6&fπ6=-π12  c=0f(x)=-xsinx

 A) fπ4=-π412

 B) f(x)=-xsinx as   sinx>x-x36,-xsinx<-x2+x46  f(x)<-x2+x46x(0,π)

 (c) f1x=-sinx-xcosxf1(x)=0tanx=-x there exist α(0,π) for which f1(α)=0

 D) f11(x)=-2cosx+xsinx  f11π2=π2,fπ2=-π2  f11π2+fπ2=0

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
 Let f:(0,π)→ℝ be a twice differentiable function such that limt→∞f(x)sint-f(t)sinxt-x=sin2x for all x∈(0,π) . If fπ6=-π12, then which of the following statement (s) is (are) TRUE?