Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

Let f:AB be a function. Then show that f  is a bijection if and only if there exists a function g:BA such that fog=IB and gof=IA and in this case g=f-1

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given f:AB be a function

Case(i): If f is bijection then prove fog=IB and gof=IA in this case g=f-1 

Since f:AB is a bijection 

f-1:BA is also a bijection and we know that f-1 of =IA, fof -1=IB 

Now take g=f-1

gof=IA and fog=IB

Case (ii) :

Conversely assume that there exists a function 

g:BA such that gof=IAand fog=IB

Then we have to prove f  is bijection and g=f-1 

Let a1,a2A

fa1,fa2B (f:AB is a function)

Let fa1=fa2 

gfa1=gfa2 (g:BA is a function )

(gof)a1=( gof )a2IAa1=IAa2

a1=a2 

 f is one-one 

Let bB

g(b)=aA(g:BA is a function )

f(a)=f(g(b))=(fog)(b)=IB(b)=b

f is onto 

f is both one-one &onto

f:AB is bijection and is invertible function so f-1:BA is bijective

g and f-1 have same domain B

Let bB since f:AB is onto, then there exists aA such that f(a)=b 

f-1(b)=a

Now g(b)=g(f(a))

                 =(gof)(a)=IA(a)

                =(gof)(a)=IA(a)

Hence g=f-1

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon