Q.

Let f:RR be a continuous function satisfying f(x)+f(x+k)=n, for all xR where k > 0 and n i a positive integer. If I1=04nkf(x)dx and I2=k3kf(x)dx, then :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

I1+nI2=6n2k

b

I1+nI2=4n2k

c

I1+2I2=4nk

d

I1+2I2=2nk

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

f(x)+f(x+k)=nf(x+k)+f(x+2k)=nsubtract we will get ,f(x)=f(x+2k)

f(x) is periodic with period 2k

I1=04nkf(x)dx=2n02kf(x)dxI2=k3kf(x)dx=202kf(x)dx

Now,

f(x)+f(x+k)=n0kf(x)dx+0kf(x+k)dx=nk0kf(x)dx+k2kf(x)dx=nk02kf(x)dx=nkI1=2n2k,I2=2nkI1+nI2=4n2k

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon