Q.

Let f:RR be a differentiable function such that fπ4=2, fπ2=0 and  fπ2=1 and let  g(x)=xπ/4f(t)sect+tansec tf(t)dt for xπ4,π2. Then limxπ2g(x)  is equal to :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

2

b

-3

c

3

d

4

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

g(x)=xπ/4f(t)sect+tantsectf(t)dtg(x)=xπ/4d(f(t)sect)=f(t)sectxπ/4 g(x)=2f(x)secx=2f(x)cosxlim xπ2-g(x)=2limxπ2f(x)cosx

=2limxπ2f(x)(sinx) by L-Hospital rule=2+fπ2sinπ2=2+11=3

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let f:R→R be a differentiable function such that fπ4=2, fπ2=0 and  f′π2=1 and let  g(x)=∫xπ/4 f′(t)sec⁡t+tan⁡sec tf(t)dt for x∈π4,π2. Then limx→π2− g(x)  is equal to :