Q.

Let f(x)=2tan1x and g(x)be a differentiable function satisfying
gx+2y3=g(x)+2g(y)3x,yR, and  g(0)=2, g'0=1. The number of integers ‘x’ satisfying  f2(g(x))5f(g(x))+4>0 where x(10,20) is greater than or equal to

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

7

b

8

c

6

d

5

answer is A, B, C, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

g(x)=x+2f(g(x))=2tan1(x+2)f2(g(x))5f(g(x))+4>0f(g(x))<1 or f(g(x))>4
tan1(x+2)<12 or tan1(x+2)>2x10,tan122 as 12<π6tan12<13tan122<132
Hence integers in range are (–9, –8, ….., –2)

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon