Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let fx=7tan8x+7tan6x3tan4x3tan2x  for all  xπ2,π2.Then the correct expression(s) is(are)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

0π/4xfxdx=112

b

0π/4fxdx=1

c

0π/4xfxdx=16

d

0π/4fxdx=0

answer is A, B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We have, fx=7tan8x+7tan6x3tan4x3tan2x        =7tan6x-3tan2x1+tan2x        =7tan6x-3tan2xsec2x Now 0π4fxdx=017t6-3t2dt       Put tanx=tsec2xdx=dtchange of limits x=0t=0, x=π4t=1                              =t7-t301                              =0 Also 0π4xfxdx=01tan-1t7t6-3t2dt       Put tanx=tsec2xdx=dt and x=tan-1tchange of limits x=0t=0, x=π4t=1                               =tan-1t.t7-t301-0111+t2t7-t3dt     integrating by parts                               =01t31-t2dt                              =t44-t6601                              =112

options (1),(2) are correct.

 

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon