Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x)  be a differentiable on the interval

(0,) such that f(1)=1, and  limtxt2f(x)x2f(t)tx=1for 

each x > 0.  Then  f(x) is 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

13x+4x23

b

13x+2x23

c

1x+2x2

d

1x

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

1=limtxt2f(x)t2f(t)+t2f(t)x2f(t)tx

=limtxt2(f(x)f(t))tx+limtx(t+x)f(t)=x2f(x)+2xf(x)

Thus f(x) is a solution of the differential equation

x2dydx2xy=1  dydx2xy=1x2     (1)

This is a linear equation with I.F. =e2xdx=1x2

Multiplying (1) with 1/x2 we get 

ddxyx2=1x4yx2=13x3+C

Since f(1)=1  so C=23  y=23x2+13x.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring