Q.

Let f(x)=g(x)e1/xe1/xe1/x+e1/x, where g is a continuous function then limx0f(x) exist if

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

g(x)=x2+4

b

g(x)=xh(x),h(x) is polynomial

c

g(x)=x+2

d

g (x) is a constant function

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

limx0+e1/xe1/xe1/x+e1/x=limx0+1e2/x1+e2/x=1limx0e1/xe1/xe1/x+e1/x=limx0e2/x1e2/x+1=1
Hence limx0f(x) exists if g(x)=xh(x)
Where h(x) is a continuous function. If g(x)=a(a0) then 
limx0+f(x)=a,limx0f(x)=a. Thus limx0f(x) does not exist if f(x)=x+2 or x2+4 or is a constant function.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let f(x)=g(x)e1/x−e−1/xe1/x+e−1/x, where g is a continuous function then limx→0 f(x) exist if