Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x)=ln2xx2+sinπx2. Then which one

of the following options is not correct ?

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

minimum value of f (x) does not exist

b

graph of f is symmetrical about the line x=1

c

graph of f is symmetrical about the line x=2

d

maximum value of f (x) is 1

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Clearly, f (x) is defined for all x(0,2)

Also, f(1+α)=f(1α) for all α(0,1)

So, y=f (x) is symmetrical about the line x=1.

Clearly, 2xx2 and sinπx2 attain the maximum value 1 at x=1.

Therefor , f(x)=ln2xx2+sinπx2 attains its maximum

value at   x=1.  Also,

Maximum value =f(1)=ln(21)+sinπ2=1.

We observe that f (x) does not exist.

Hence, potion (b) is not correct.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let f(x)=ln⁡2x−x2+sin⁡πx2. Then which oneof the following options is not correct ?