Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let f(x)=ln2xx2+sinπx2. Then which one

of the following options is not correct ?

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

minimum value of f (x) does not exist

b

graph of f is symmetrical about the line x=1

c

graph of f is symmetrical about the line x=2

d

maximum value of f (x) is 1

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Clearly, f (x) is defined for all x(0,2)

Also, f(1+α)=f(1α) for all α(0,1)

So, y=f (x) is symmetrical about the line x=1.

Clearly, 2xx2 and sinπx2 attain the maximum value 1 at x=1.

Therefor , f(x)=ln2xx2+sinπx2 attains its maximum

value at   x=1.  Also,

Maximum value =f(1)=ln(21)+sinπ2=1.

We observe that f (x) does not exist.

Hence, potion (b) is not correct.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon