Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

 Let f(x) satisfy the requirements of Lagrange's mean value theorem in [0,2]. If f(0)=0 and f'(x)12 for all x[0,2], then

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

fx1

b

fx=3

c

fx2x

d

fx2

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 Let x(0,2). Since, f(x) satisfies the requirements of Lagrange's mean value theorem in [0,2]

So, it also satisfies in [0,x]. Consequently, there exists c(0,x) such that fx-f0x-0=f'c

 f(x)x=f'(c)12

|f(x)|x2

Since 0<x<2

 |f(x)|1

Hence, option-3 is the correct answer.

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
 Let f(x) satisfy the requirements of Lagrange's mean value theorem in [0,2]. If f(0)=0 and f'(x)≤12 for all x∈[0,2], then