Q.

Let f(x)=x24ax+5a26a. Let p be the smallest positive integral value  of 'a'  for  f(x)>0 xR and S be the set of values of ' a' for which range of f(x) is [8,). Then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

a=7

b

S=(,2][4,)

c

a=6

d

S={2,4}

answer is B, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

f(x)=x24ax+5a26a>0xRD=16a245a26a<0  [\becauseCoeff. of x2>0 ] 4a2+24a<0a26a>0a<0 or a>6

Smallest positive value of a = 7
Also f(x)=[x2a]2+5a26a4a2
 least f(x)=a26a
Since range f(x)[8,)
    a26a=8a26a+8=0a=2,4    S={2,4}

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let f(x)=x2−4ax+5a2−6a. Let p be the smallest positive integral value  of 'a'  for  f(x)>0 ∀x∈R and S be the set of values of ' a' for which range of f(x) is [−8,∞). Then