Q.

Let g:(0,)R be a differentiable function such that

x(cosx-sinx)ex+1+g(x)ex+1-xexex+12dx=xg(x)ex+1+c

for all x>0, where c is an arbitrary constant. Then.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

g is decreasing in 0,π4

b

g' is increasing in 0,π4

c

g+g' is increasing in 0,π2

d

g-g' is increasing in 0,π2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

x(cosx-sinx)ex+1+g(x)ex+1-xexex+12dx=xg(x)ex+1+c

On differentiating both sides w.r.t. x, we get

x(cosx-sinx)ex+1+g(x)ex+1-xexex+12 =ex+1g(x)+xg'(x)-ex·x·g(x)ex+12 ex+1x(cosx-sinx)+g(x)ex+1-xex =ex+1g(x)+xg'(x)-ex·x·g(x) g'(x)=cosx-sinx g(x)=sinx+cosx+C g(x) is increasing in (0,π/4) g''(x)=-sinx-cosx<0 g'(x) is decreasing function   let h(x)=g(x)+g'(x)=2cosx+C h'(x)=g'(x)+g''(x)=-2sinx<0  h is decreasing   let ϕ(x)=g(x)-g'(x)=2sinx+C ϕ'(x)=g'(x)-g''(x)=2cosx>0 ϕ is increasing 

Hence option D is correct.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon