Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let m1,m2 be the slopes of two adjacent sides of a square of side a such that a2+11a+3m12+m22=220. If one vertex of the square is (10(cosαsinα) 10(sinα+cosα)), where α0,π2 and the equation of one diagonal is (cosαsinα)x+(sinα+cosα)y=10 then 72sin4α+cos4α+a23a+13 is equal to:

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

119

b

128

c

145

d

155

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

AC=(cosαsinα)+(sinα+cosα)y=10BD=(sinαcosα)x+(sinαcosα)y=0  point of intersection of diagonals is(5(cosαsinα),5(cosα+sinα))one vertex of the square is (10(cosαsinα),10(sinαcosα))Length of the diagonal is 102length of side a=10

 

a2+11a+3m12+m22=220m12+m22=2201001103=103 and m1m2=1 Slopes of the sides are tanα and - cotα tan2α=3 or 1372sin4α+cos4α+a23a+13=72tan4α+11+tan2α2+a23a+13=128
Question Image

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring