Q.

Let m1,m2 be the slopes of two adjacent sides of a square of side a such that a2+11a+3m12+m22=220. If one vertex of the square is (10(cosαsinα) 10(sinα+cosα)), where α0,π2 and the equation of one diagonal is (cosαsinα)x+(sinα+cosα)y=10 then 72sin4α+cos4α+a23a+13 is equal to:

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

155

b

128

c

119

d

145

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

AC=(cosαsinα)+(sinα+cosα)y=10BD=(sinαcosα)x+(sinαcosα)y=0  point of intersection of diagonals is(5(cosαsinα),5(cosα+sinα))one vertex of the square is (10(cosαsinα),10(sinαcosα))Length of the diagonal is 102length of side a=10

 

a2+11a+3m12+m22=220m12+m22=2201001103=103 and m1m2=1 Slopes of the sides are tanα and - cotα tan2α=3 or 1372sin4α+cos4α+a23a+13=72tan4α+11+tan2α2+a23a+13=128
Question Image

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon