Q.

Let M=sin4θ1sin2θ1+cos2θcos4θ=αI+βM1 , Where α=αθ  and β=βθ  are real numbers, and I is the 2×2 identity matrix.

 If α*  is the minimum of the set αθ:θ[0,2π)  and β*   is the minimum of the set βθ:θ[0,2π)

Then the value of α*+β*  is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

1716

b

3116

c

2916

d

3716

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

M=sin4θ-1-sin2θ1+cos2θcos4θ=αI+βM-1 Where α=α(θ) and β=β(θ) are real numbers |M|=(sinθcosθ)4+1+sin2θ1+cos2θ=2+sin2θcos2θ+sin4θcos4θ 

since M=αI+βM-1

sin4θ-1+sin2θ1+cos2θcos4θ=α00α+β|M|cos4θ1+sin2θ-1-cos2θsin4θ Comparing on both side sin4θ=α+β|M|cos4θ-1-sin2θ=β|M|1+sin2θβ=-|M| =-2+sin2θcos2θ+sin4θcos4θ

  therefore sin4θ=α-cos4θ α=αθ=sin4θ+cos4θ=1-2sin2θcos2θ=1-12sin22θ

α*= minimum of α(θ)=1-121=12now β* =Minimum of βθ=-2+sin2θcos2θ+sin4θcos4θ=-sin2θcos2θ+122+74=-14sin22θ+122+74β*=-14+122+74=-3716  when θ=nπ+π4α*+β*=-3716+12=-37+816=-2916 

 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let M=sin4θ−1−sin2θ1+cos2θcos4θ=αI+βM−1 , Where α=αθ  and β=βθ  are real numbers, and I is the 2×2 identity matrix. If α*  is the minimum of the set αθ:θ∈[0,2π)  and β*   is the minimum of the set βθ:θ∈[0,2π). Then the value of α*+β*  is