Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Let n1<n2<n3<n4<n5 be positive integers such that n1+n2+n3+n4+n5=20.  Then the number of such distinct arrangements n1,n2,n3,n4,n5is 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 7.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

1st  solution - As n11,n22 etc.|
We have a+b+c+d+e=20(1+2+3+4+5)=5
i.e. a+b+c+d+e=5
Now abcde. So the cases can be listed giving 
(0,0,0,0,5);(0,0,0,1,4);(0,0,0,2,3);(0,0,1,1,3);(0,0,1,2,2);(0,1,1,1,2);(1,1,1,1,1)
So there are 7 distinct arrangements.

2nd Solution - The largest e is 10. (given)
a    b   c  d  e 1    2    3  4  10
 and least e is 6.
2,3,4,5,6 
So the number of ways =4C0+ 4C14+ 4C23+ 4C32+ 4C41
                                        =1+1+2+2+1=7

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon