Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let n1<n2<n3<n4<n5 be positive integers such that n1+n2+n3+n4+n5=20.  Then the number of such distinct arrangements n1,n2,n3,n4,n5is 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 7.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

1st  solution - As n11,n22 etc.|
We have a+b+c+d+e=20(1+2+3+4+5)=5
i.e. a+b+c+d+e=5
Now abcde. So the cases can be listed giving 
(0,0,0,0,5);(0,0,0,1,4);(0,0,0,2,3);(0,0,1,1,3);(0,0,1,2,2);(0,1,1,1,2);(1,1,1,1,1)
So there are 7 distinct arrangements.

2nd Solution - The largest e is 10. (given)
a    b   c  d  e 1    2    3  4  10
 and least e is 6.
2,3,4,5,6 
So the number of ways =4C0+ 4C14+ 4C23+ 4C32+ 4C41
                                        =1+1+2+2+1=7

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon