Q.

Let n1<n2<n3<n4<n5 be positive integers such that n1+n2+n3+n4+n5=20.  Then the number of such distinct arrangements n1,n2,n3,n4,n5is 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 7.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

1st  solution - As n11,n22 etc.|
We have a+b+c+d+e=20(1+2+3+4+5)=5
i.e. a+b+c+d+e=5
Now abcde. So the cases can be listed giving 
(0,0,0,0,5);(0,0,0,1,4);(0,0,0,2,3);(0,0,1,1,3);(0,0,1,2,2);(0,1,1,1,2);(1,1,1,1,1)
So there are 7 distinct arrangements.

2nd Solution - The largest e is 10. (given)
a    b   c  d  e 1    2    3  4  10
 and least e is 6.
2,3,4,5,6 
So the number of ways =4C0+ 4C14+ 4C23+ 4C32+ 4C41
                                        =1+1+2+2+1=7

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon