Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Let P be the point on the parabola y2=4x which is at the shortest distance from the  centre S of the circle x2+y2-4x-16y+64=0 . Let Q be the point on the circle dividing  the line segment SP internally. Then 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

SP=25

b

 the slope of the tangent to the circle at Q is 12

c

\text { the x-intercept of the normal to the parabola at } \mathrm{P} \text { is } 6SQ:QP=(5+1):2

d

 the x-intercept of the normal to the parabola at P is 6

answer is Æ.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(x-2)2+(y-8)2=4

 Normal to y2=4x

y+xt=2t+t3

 If it passes through (2,8) then 8+2t=2t+t3

t=2

P(4,4) eq to SP is 2x+y=12

S¯(2,8)¯SP=4+16=25

 Then Q2+4λ1+λ,8+4λ1+λ=4-2λ+1,4+4λ+1

Q lie, on the circle

22λ+12+4λ+142=4

4+1611λ+12=4

11λ+12=15λ=5+14

Let Q is (2-t,8+2t)

t2+4t2=4t=±25

 Ratio 8-8-2t8+2t-4=-tt+2=5+14

X-intercept of normal=6

 Slope of tangent to circle at Q=+12

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
 Let P be the point on the parabola y2=4x which is at the shortest distance from the  centre S of the circle x2+y2-4x-16y+64=0 . Let Q be the point on the circle dividing  the line segment SP internally. Then