Q.

Let S=(0,2π)-π2,3π4,3π2,7π4. Let y=y(x),xS , be the solution curve of the differential equation dydx=11+sin2x,yπ4=12. if the sum of abscissas of all the points of intersection of the curve y=y(x) with the curve y=2sinx is kπ12, then k is equal to

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 42.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

dydx=11+sin2xdy=dx(sinx+cosx)2dy=sec2x1+tanx2y(x)=11+tanx+Cyπ4=12=12+CC=1y(x)=11+tanx+1y(x)=1+1+tanx1+tanxy(x)=tanx1+tanx

y=2sinx tanx1+tanx=2sinx

sinx=0, 12=sinx+cosxx=π 12=sinx+π4sinπ6=sinx+π4x+π4=ππ6,2π+π6x=5π6π4, x=13π6π4x=7π12,x=23π12

Sum of solutions=π+7π12+23π12=12π+7π+2312=42π12=kπ12k=42

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon