Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Let S=(0,2π)-π2,3π4,3π2,7π4. Let y=y(x),xS , be the solution curve of the differential equation dydx=11+sin2x,yπ4=12. if the sum of abscissas of all the points of intersection of the curve y=y(x) with the curve y=2sinx is kπ12, then k is equal to

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 42.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

dydx=11+sin2xdy=dx(sinx+cosx)2dy=sec2x1+tanx2y(x)=11+tanx+Cyπ4=12=12+CC=1y(x)=11+tanx+1y(x)=1+1+tanx1+tanxy(x)=tanx1+tanx

y=2sinx tanx1+tanx=2sinx

sinx=0, 12=sinx+cosxx=π 12=sinx+π4sinπ6=sinx+π4x+π4=ππ6,2π+π6x=5π6π4, x=13π6π4x=7π12,x=23π12

Sum of solutions=π+7π12+23π12=12π+7π+2312=42π12=kπ12k=42

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon